信息机

深度卷积神经网络十五问CNN与生物视觉系

发布时间:2023/12/12 13:21:08   
CNN的发展早期从大脑神经网络取得了很多灵感,现在相关研究中的一些思路和方法也在反过来帮助神经科学方面的研究,如DeepMind近期用AI探索大脑导航和多巴胺功能的工作。近日,哥伦比亚大学神经生物学与行为学博士GraceLindsay在其博客上发文,通过问答的形式讨论了CNN和生物视觉系统之间的区别和联系。机器之心进行了编译介绍。和我近期的大多数博文一样,我写这篇文章的起因是近期一个Twitter讨论,具体是关于如何将深度卷积神经网络(CNN)的组件与大脑联系起来。但是,这里的大多数思考都是我以前考虑并讨论过的。当有人使用CNN作为视觉系统的模型时,我通常(在研究讨论和其它对话上)必须鼓励和支持这一选择。部分原因是它们(在某种程度上)是神经科学领域相对较新的方法,还有部分原因是人们对它们持怀疑态度。计算模型一般在神经科学领域发展较慢,很大部分(但并非全部)是来自不使用或构建计算模型的人;它们通常被描述成不切实际或没有用处。在对技术宅的普遍反感和深度学习/人工智能(会值多少钱?)的过度炒作氛围中,不管你得到了什么模型,某些人都会厌恶它。所以在这里我希望使用一个简单(但很长)的问答形式来相对合理且准确地阐释使用CNN建模生物视觉系统的情况。这个子领域很大程度上仍处于发展阶段,所以文中不会有太多确定无疑的事实,但我会尽可能引述。此外,这些显然是我个人对这些问题的答案(以及我个人提出的问题),所以请相信其中值得相信的。我重点

转载请注明:http://www.aideyishus.com/lktp/6056.html
------分隔线----------------------------