孩子得了白癜风 http://news.39.net/bjzkhbzy/171218/5940516.html随着大数据技术在金融场景的深入应用,银行业正积极进行金融科技的战略布局,以实现各信贷业务条线的风控自动化。信用卡作为标准化的零售类信贷产品,在快速抢占市场的过程中,须采用数据驱动风险决策模式实现自动化审批,以满足其业务发展需要。数据驱动下的自动化审批是以海量的、多样的、时效的数据为基础,通过数据建模技术挖掘数据价值刻画客户的风险水平,在精细化的系统支持下实施全流程的自动化审批。在日益竞争的市场环境下,自动化审批将成为信用卡机构的核心竞争力。自动化审批是信用卡业务发展的必然选择随着金融行业“互联网+”、金融科技等战略布局,商业银行信用卡业务发展面临着多重挑战。首先是来自线上业务的冲击,互联网金融行业巨头推出“花呗”“借呗”“微粒贷借钱”“金融白条”等信贷类产品,以其服务和流量优势正在迅速扩大其客户市场,此类同质化信贷产品层出不穷。其次,各家银行纷纷意识到客户运营的重要性,将客户服务和发展市场视作同等地位。在拓展市场过程中,以数据驱动的风险决策从而实现自动化审批是信用卡机构追求服务效率的趋势所在。要想实现上述目标,需以丰富的数据获取能力和快速的数据处理传输为基础,通过自动决策的数据模型体系和系统平台作为保障,经过营销引流、信息输入、审批决策、初始授信、风险监测等过程,快速建立数据的业务关联度,通过数据分析不断调优营销与准入授信策略,在提高营销效率的同时,重点提高准入客户的风险管理水平。相对于传统的人工决策,数据驱动决策有如下几点优势。一是数据驱动更为客观。数据驱动风险决策过程中,每个环节都有相应的数据论证和统计分析,通过更为深层次的数据挖掘技术发现潜在的信息量,提取更为深入和准确的洞察信息,降低了审批人员因情绪、经验以及认知不足而导致的偏差,使得风险决策更为客观。二是数据驱动更适用于不断变化的决策环境。外部经济形势变化、政策调整以及业务的变动都会对风险管理的效果产生影响。相较于传统的利用专家业务规则和人工审批,数据驱动不仅引入了业务数据还将人口统计信息、行为数据、账户信息、外部数据纳入决策范围,使得数据成果在面对环境变化时有更为稳定的表现。同时,可以实现自动化的更新,根据新的历史数据调整各指标在模型中的权重,以达成对新数据更好的预测效果。三是数据驱动使个体更具区分度。“机器学习+大数据”的模式使得数据驱动评分卡构建出的模型更复杂也更具精细化。相对于专家评分卡,数据驱动评分卡中的评分更为分散,这也意味着个体与个体之间更具区分度,业务人员有更大空间去制定精细化的应用策略。在内外部竞争环境和发展指标的压力下,自动化审批的重要性不言而喻。对客户而言,在其提交申请后,如能第一时间获取审批结果和授信额度等信息,这将有助于提升客户体验。因此可以说自动化审批是信用卡业务发展的必然趋势。大数据为自动化审批提供技术动能互联网的蓬勃发展为大数据技术兴起带来机遇,数据采集、数据存储到数据应用技术都得到快速的发展。在此背景下,越来越多的行业意识到大数据的重要性,各家企业尽可能地利用数据决策在竞争市场中获得优势。对商业银行而言,风险领域的数据决策主要表现为基于数据规则及数据挖掘结果做出决策,而非依赖于业务专家人员的经验判断。引入外部数据,多视角评估客户风险。在自动化审批中,数据资源是实现风险决策的基础。能够刻画客户风险的数据有很多,商业银行最容易获取的数据是客户申请表、银行内部数据,包括客户
基本信息、客户行内交易流水、客户行内资产负债情况等。对于外部数据,最有价值且目前应用最广泛的是人行征信报告,该报告涵盖信用卡、汽车、住房、消费等业务领域,在信贷审批环节发挥着重要作用。其中人行征信报告数字解读是基于个人征信系统的信贷数据,利用统计建模技术开发出来的个人信用风险评估指标,是一种外部机构通用评分,具有覆盖面广、表现充分、普适性等特点,该评分的价值已经多轮验证并获得多家银行的认可。其次是学信网、政务及第三方征信公司等数据。值得
转载请注明:
http://www.aideyishus.com/lkjg/6143.html